199 research outputs found

    Many Task Learning with Task Routing

    Full text link
    Typical multi-task learning (MTL) methods rely on architectural adjustments and a large trainable parameter set to jointly optimize over several tasks. However, when the number of tasks increases so do the complexity of the architectural adjustments and resource requirements. In this paper, we introduce a method which applies a conditional feature-wise transformation over the convolutional activations that enables a model to successfully perform a large number of tasks. To distinguish from regular MTL, we introduce Many Task Learning (MaTL) as a special case of MTL where more than 20 tasks are performed by a single model. Our method dubbed Task Routing (TR) is encapsulated in a layer we call the Task Routing Layer (TRL), which applied in an MaTL scenario successfully fits hundreds of classification tasks in one model. We evaluate our method on 5 datasets against strong baselines and state-of-the-art approaches.Comment: 8 Pages, 5 Figures, 2 Table

    HyperLearn: A Distributed Approach for Representation Learning in Datasets With Many Modalities

    Get PDF
    Multimodal datasets contain an enormous amount of relational information, which grows exponentially with the introduction of new modalities. Learning representations in such a scenario is inherently complex due to the presence of multiple heterogeneous information channels. These channels can encode both (a) inter-relations between the items of different modalities and (b) intra-relations between the items of the same modality. Encoding multimedia items into a continuous low-dimensional semantic space such that both types of relations are captured and preserved is extremely challenging, especially if the goal is a unified end-to-end learning framework. The two key challenges that need to be addressed are: 1) the framework must be able to merge complex intra and inter relations without losing any valuable information and 2) the learning model should be invariant to the addition of new and potentially very different modalities. In this paper, we propose a flexible framework which can scale to data streams from many modalities. To that end we introduce a hypergraph-based model for data representation and deploy Graph Convolutional Networks to fuse relational information within and across modalities. Our approach provides an efficient solution for distributing otherwise extremely computationally expensive or even unfeasible training processes across multiple-GPUs, without any sacrifices in accuracy. Moreover, adding new modalities to our model requires only an additional GPU unit keeping the computational time unchanged, which brings representation learning to truly multimodal datasets. We demonstrate the feasibility of our approach in the experiments on multimedia datasets featuring second, third and fourth order relations

    BERT for Evidence Retrieval and Claim Verification

    Get PDF
    Motivated by the promising performance of pre-trained language models, we investigate BERT in an evidence retrieval and claim verification pipeline for the FEVER fact extraction and verification challenge. To this end, we propose to use two BERT models, one for retrieving potential evidence sentences supporting or rejecting claims, and another for verifying claims based on the predicted evidence sets. To train the BERT retrieval system, we use pointwise and pairwise loss functions, and examine the effect of hard negative mining. A second BERT model is trained to classify the samples as supported, refuted, and not enough information. Our system achieves a new state of the art recall of 87.1 for retrieving top five sentences out of the FEVER documents consisting of 50K Wikipedia pages, and scores second in the official leaderboard with the FEVER score of 69.7

    Detecting CNN-Generated Facial Images in Real-World Scenarios

    Get PDF
    Artificial, CNN-generated images are now of such high quality that humans have trouble distinguishing them from real images. Several algorithmic detection methods have been proposed, but these appear to generalize poorly to data from unknown sources, making them infeasible for real-world scenarios. In this work, we present a framework for evaluating detection methods under real-world conditions, consisting of cross-model, cross-data, and post-processing evaluation, and we evaluate state-of-the-art detection methods using the proposed framework. Furthermore, we examine the usefulness of commonly used image pre-processing methods. Lastly, we evaluate human performance on detecting CNN-generated images, along with factors that influence this performance, by conducting an online survey. Our results suggest that CNN-based detection methods are not yet robust enough to be used in real-world scenarios.Comment: Accepted to the workshop on Media Forensics at CVPR 202

    4-Connected Shift Residual Networks

    Full text link
    The shift operation was recently introduced as an alternative to spatial convolutions. The operation moves subsets of activations horizontally and/or vertically. Spatial convolutions are then replaced with shift operations followed by point-wise convolutions, significantly reducing computational costs. In this work, we investigate how shifts should best be applied to high accuracy CNNs. We apply shifts of two different neighbourhood groups to ResNet on ImageNet: the originally introduced 8-connected (8C) neighbourhood shift and the less well studied 4-connected (4C) neighbourhood shift. We find that when replacing ResNet's spatial convolutions with shifts, both shift neighbourhoods give equal ImageNet accuracy, showing the sufficiency of small neighbourhoods for large images. Interestingly, when incorporating shifts to all point-wise convolutions in residual networks, 4-connected shifts outperform 8-connected shifts. Such a 4-connected shift setup gives the same accuracy as full residual networks while reducing the number of parameters and FLOPs by over 40%. We then highlight that without spatial convolutions, ResNet's downsampling/upsampling bottleneck channel structure is no longer needed. We show a new, 4C shift-based residual network, much shorter than the original ResNet yet with a higher accuracy for the same computational cost. This network is the highest accuracy shift-based network yet shown, demonstrating the potential of shifting in deep neural networks.Comment: ICCV Neural Architects Workshop 201

    Logical Structure Detection for Heterogeneous Document Classes

    Get PDF

    Logical Structure Detection for Heterogeneous Document Classes

    Get PDF

    Episodic Multi-Task Learning with Heterogeneous Neural Processes

    Full text link
    This paper focuses on the data-insufficiency problem in multi-task learning within an episodic training setup. Specifically, we explore the potential of heterogeneous information across tasks and meta-knowledge among episodes to effectively tackle each task with limited data. Existing meta-learning methods often fail to take advantage of crucial heterogeneous information in a single episode, while multi-task learning models neglect reusing experience from earlier episodes. To address the problem of insufficient data, we develop Heterogeneous Neural Processes (HNPs) for the episodic multi-task setup. Within the framework of hierarchical Bayes, HNPs effectively capitalize on prior experiences as meta-knowledge and capture task-relatedness among heterogeneous tasks, mitigating data-insufficiency. Meanwhile, transformer-structured inference modules are designed to enable efficient inferences toward meta-knowledge and task-relatedness. In this way, HNPs can learn more powerful functional priors for adapting to novel heterogeneous tasks in each meta-test episode. Experimental results show the superior performance of the proposed HNPs over typical baselines, and ablation studies verify the effectiveness of the designed inference modules.Comment: 28 pages, spotlight of NeurIPS 202
    corecore